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This paper describes a simple numerical in-
tegration method for diffraction integrals
which is based on elementary geometrical
considerations of the manner in which
different portions of the incident wavefront
contribute to the diffracted field. The
method is applicable in a wide range of
cases as the assumptions regarding the
type of integral are minimal, and the results
are accurate even when the wavefront is
divided into only a relatively small number
of summation elements. Higher accura-
cies can be achieved by increasing the
number of summation elements and/or
incorporating Simpson’s rule into the basic
integration formula. The use of the
method is illustrated by numerical exam-

ples based on Fresnel’s diffraction inte-
grals for circular apertures and apertures
bounded by infinite straight lines (slits,
half planes). In the latter cases, the numeri-
cal integration formula is reduced to a
simple recursion formula, so that there is
no need to perform repetitive summations
for every point of the diffraction profile.
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1. Basic Equations

Diffraction problems that can be described in two
dimensions as indicated in Fig. 1 usually lead to com-
plex integrals of the type

U (x , z ) = �d� A (� , x , z )B (� , x , z ), (1)

where A and B account for the amplitude and phase of
the optical field at a point of observation P = (x , z ) due
to a point Q = (� ,0) located inside a diffracting aperture.
In practice, the phase term B oscillates rapidly inside the
range of integration while the amplitude term A varies
slowly. The phase term B is often, but not always, a
sinusoidal function of the form eikg(�), where k = 2�/� is
the circular wavenumber of monochromatic light with
wavelength � .

When closed analytical expressions for U are not
available it is sometimes possible to find approximate
solutions by the method of stationary phase [1,2]. How-
ever, in this author’s experience, the results obtained can
be unreliable. A potential source of error is the basic
premise of the method itself; namely, that the rapid
oscillations of the phase term B nullify each other ex-
cept in the vicinity of stationary points. This is pre-
sumed true on account of the slow variation of the am-
plitude term A , but inconsistent with the well-known
fact that the corresponding series encountered in con-
nection with Fresnel’s zone construction, A1 � A2

+ A3 � ... � An , has a finite value even when the terms
alter their absolute values very gradually [3,4]. Accord-
ingly, substantial errors can occur if the contribution of
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Fig. 1. Cross section of a plane diffracting aperture (xz -plane).

the stationary points is weak. As shown in Appendix A,
the stationary-phase method fails completely when
applied to Fresnel diffraction at a slit or half plane.

For these reasons, it may be preferable to use numer-
ical integration. In doing so, the width of the summation
elements, �� = h , must be sufficiently small to ensure
that all oscillations of the phase term B are accurately
sampled. On the other hand, the computations would be
unnecessarily complicated if h is too small. A general
rule for choosing h can be established as follows. As we
are dealing with diffraction, the period of the oscilla-
tions does not depend on the specific functional form of
B but only on the path length P0Q + QP , where
P0 = (x0, z0) is the source point shown in Fig. 1. When the
point Q is moved along the x -axis by an increment h ,
this path length changes by

� = �z 2
0 + (� + h � x0)2 � �z 2

0 + (� � x0)2

� �z 2 + (� + h � x )2 + �z 2 + (� �x )2

≈ h�� � x0

| z0|
+

� � x
z �, (2)

where it is assumed that (� � x0)2<< z0
2, (� � x )2<< z 2,

and terms in h 2 are ignored. Hence it follows from the
quarter-wave criterion that reliable results can be ex-
pected when h is chosen so that � < � /4.

We now divide the aperture halfwidth a into N sum-
mation elements bounded by equidistant points Qn , as
illustrated in Figs. 2a, b, and 4, and define

OQ0 = x = mh , Q0Qn = � � x , Qn�1Qn = h =
a
N

, (3a)

where O is the coordinate origin, Q0 is the projection of
the point of observation P onto the x -axis, and m , n , and
N are integers. Accordingly, Eq. (1) can be replaced by
the quadrature formula

U (x , z ) ≈ Um =
a
N �

n�0

Amn Bmn , (3b)

where

Amn = A [(n � 1
2)h ,mh , z ], Bmn = B [(n � 1

2)h ,mh , z ]
(3c)
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Fig. 2. Annular summation elements for a circular aperture (xy -plane). (a) Lit region. (b)
Shadow region.

are the values of A and B at the midpoints of the summa-
tion elements and the limits of summation depend on the
diffraction problem being considered. The value of N to
be used in these formulae can be estimated from Eq. (2)
by assuming a distant source (| z0|>> z ) so that
� ≈ h (� � x )/z = a 2n /(N 2z ). If this is to be less than � /4
for every summation element used for the computations,
a good upper limit for n is 3N ,1 and then one finds

1 The value pertains to a point of observation located one aperture
halfwidth beyond the shadow boundary. A larger value should be used
if necessary.

N �
12a 2

� z
=

6u
�

≈ 2u , (3d)

where u = ka 2/z is the familiar configuration parameter
of Fresnel’s diffraction theory for | z0|>> z . As it is well
known that diffraction patterns pertaining to large val-
ues of u are highly structured [4], this result makes good
sense in that it stipulates narrower summation elements
when u increases. The accuracy of the numerical com-
putations can also be improved by replacing the value of
Bmn in Eq. (3c) with the value corresponding to Simp-
son’s rule,
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Bmn = 1
6{B [(n � 1)h ,mh , z ] + 4B [(n � 1

2)h ,mh , z ]

+ B [nh ,mh , z ]}. (3e)

By means of trial computations, it was found that this
substitution can result in a tenfold improvement of accu-
racy.

The above equations are intended for applications
where closed solutions of Eq. (1) cannot be found and
will be used in future research. In the remainder of the
present paper, their validity will be demonstrated by
numerical examples involving the Fresnel diffraction
integral

UF(P) = Ugeom(P)	F(P), 	F(P) =
�i
� z

�dQeik(QP�z), (4a)

where Ugeom is the geometrical field in the absence of
diffraction, 	F is the modification of the field by diffrac-
tion, and where

QP = �(� � x )2 + 
 2 + z 2 ≈ z +
(� � x )2 + 
 2

2 z
. (4b)

These expressions are valid in the paraxial Fresnel ap-
proximation for a distant source point P0 and pertain to
a point of observation P = (x ,0, z ) as in Fig. 1 whereas
the point Q = (� ,
 ,0) is assumed to lie anywhere in the
aperture plane z = 0. In Secs. 2 and 3 of the paper, 	F

will be reduced to a two-dimensional integral for the
respective cases of circular apertures and apertures
bounded by infinite straight lines (slit and half plane).
The results of the numerical integration will be shown
and compared to the corresponding exact solutions,
which may be found in Ref. [5].

2. Circular Aperture

For a circular aperture of radius a , Fresnel’s integral
in Eq. (4a) can be reduced to a single integral by assum-
ing annular area elements dQ which are centered on the
projection Q0 of the point of observation onto the aper-
ture plane, as indicated in Figs. 2a and 2b. With O as the
aperture center, x = OQ0 > 0 and � = OQ > x for points
to the right of Q0, the distance QP defined by Eq. (4b)
will then be constant and equal to

QP = z + (� � x )2/2z (5a)

everywhere on dQ and the integration can be carried out
over � alone. As the annular area elements are eccentric
to the aperture they are, in general, partially obstructed
by the aperture rim so that their effective areas will be

given by

dQ = 2�(1 � � /�)d(� � x )(� � x ), (5b)

where � = �AQ0Q is the semi-angle subtended at Q0 by
the intersection of the area elements with the aperture
rim, as indicated in the Figs. 2a and 2b.

When Q0 lies inside the aperture (x � a , as in Fig.
2a), the innermost area elements with radii � � x
� a � x are unobstructed and fully contained in the
aperture (� = 0), and the outermost elements with radii
� � x > a + x are fully obstructed (� = �). For the inter-
mediate elements the angle � is found by applying the
cosine theorem to the triangle OAQ0 shown in the fig-
ure, so that

cos� =
a 2 � x 2 � (� � x )2

2x (� � x )
. (5c)

Thus, upon substitution of Eqs. (5a) and (5b) into Eq.
(4a) and noting that 2�/(� z ) = k /z = u /a 2,

	F(x ) =
� iu

a 2 � �
a�x

0

d(� � x )(� � x )eik(��x)2/(2z)

+ �
a+x

a�x

d(� � x )(� � x )(1 � � /�)eik(��x)2/(2z)�
= [1 � eiu(a�x)2/(2a2)]

�
iu
a 2 �

a+x

a�x

d(� � x )(� � x )(1 � � /�)eik(��x)2/(2z), x � a ,

(5d)

where the first integral was reduced to an elementary
expression by substituting ik (� � x )2/2 z as the integra-
tion variable. When Q0 lies outside the aperture (x � a ,
as in Fig. 2b), the inner elements with radii
� � x � x � a and the outer elements with radii
� � x � x + a are all fully obstructed (� = �). In the
intermediate region, Eq. (5c) applies once again2 and we
have

	F(x ) =
� iu

a 2 �
x+a

x�a

d(� � x )(� � x )(1 � � /�)eik(��x)2/(2z),

x � a . (5e)

The integrals in Eqs. (5d) and (5e) can now be identi-
fied with Eq. (1), with

2 Although � is discontinuous on crossing the shadow boundary, Eqs.
(5d) and (5e) are equivalent and give identical results for x = a .
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A (� ,x , z ) =
� iu (� � x )(1 � � /�)

a 2 ,

B (� ,x , z ) = eik(��x)2/(2z), (6a)

so that, according to Eqs. (3a-c),

	F(P) ≈ am = [1 � eiu(N�m)2/(2N2)]

�
iu
N 2 �N+m

n=N�m+1

n (1 � �mn /�)eiu(n�
1
2
)2/(2N2), m � N (6b)

	F(P) ≈ 	m = �
iu
N 2 �m+N

n=m�N

n (1 � �mn /�)eiu(n�
1
2
)2/(2N2), (6c)

where

�mn = cos�1�N 2 � m 2 � (n � 1
2)

2

2m (n � 1
2)

�. (6d)

The use of these equations on a personal computer is
simple. As an example, Fig. 3 compares the numerical
values of |	m |2 obtained for u = 5� and N = 16 to the
exact results given by the Fresnel-Lommel theory. The
agreement is good and improves when larger values of
N are used, as indicated in the left-hand column of Table
1. The values listed in the table are the maximum errors
encountered in the range m � 3N . In this particular case
they occurred near the center of the profile (m � 0.5N ).

Fig. 3. Approximate (—) and exact (----) diffraction profiles of a
circular aperture.

3. Apertures Bounded by Infinite Straight
Lines

For a plane aperture of width (l + r ) which is
bounded by infinite straight lines as in Fig. 4, the reduc-
tion of the integral of Eq. (4a) to two dimensions is

Table 1. The largest errors in diffraction profiles computed from
Eqs. (6a), (6b), (6c), (10a), (10b), and (11b).

N Circular Slit M Half
aperture (u=5�) plane
(u=5�)

16 6.010�2 2.310�2 8 1.910�2

32 2.310�2 5.610�3 16 4.310�3

64 6.410�3 1.410�3 32 1.110�3

128 2.510�3 3.610�4 64 2.710�4

256 9.610�4 9.010�5 128 6.610�5

512 3.510�4 2.310�5 256 1.710�5

readily achieved by choosing cartesian coordinates so
that the y -axis is parallel to the aperture edges. Letting
P = (x ,0, z ) as before, this leads to

	F(P) =
� i
� z �

�

��

d
eik
2/2z �
r

�l

d�eik(��x)2/(2z)

=
� iei�/4

�� z
�

(r�x)

�(l+x)

d(� � x )eik(��x)2/(2z), (7a)

where

�
�

��

d
eik
2/(2z) = �2� zF (�) = �� zei�/4 (7b)

and F (�) = ei�/4 is the complex Fresnel integral at infin-
ity.

The amplitude term A (� ,x , z ) in Eq. (1) is now given
by the factor � iei�/4/�� z that appears outside the inte-
gral of Eq. (7b) so that, on letting l = Lh and r = Rh as
indicated in Fig. 4 and using Eqs. (3a) to (3d), we find

	m =
� ihei�/4

�� z
�R�m

n=�(L+m)

eik(n�
1
2
)2h2/(2z), n � 0. (8a)

It follows immediately that, if 	m is known and P is
moved to the right or left by �h , the new value of 	m

is given by the recursion formula

	m�1 = 	m �
ihei�/4

�� z
[eik(L+m+1

2
)2h2/(2z) �eik(R�m�

1
2
)2h2/(2z)], (8b)

which illustrates in a very instructive manner how the
diffraction pattern changes when the point of observa-
tion is moved, so that one portion of the wavefront is
uncovered by the aperture and another portion is cov-
ered. The recursion formula Eq. (8b) is convenient for
practical computations as it allows the computation of
successive values of 	m without performing the summa-
tion of Eq. (8a) for every point. In the examples given
below, a starting value for 	m is obtained from known
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Fig. 4. Rectangular summation elements for apertures bounded by straight lines (xy -plane).

closed solutions, so that there is no need at all to perform
a summation. This use of an exact starting value also
improves the accuracy of the computations because it
forces the initial error to be zero.

3.1 Slit

For a slit of width 2a , we define l = r = a , L = R = N
and h = a /N , so that

h

�� z
=

1
N
	 u

2�
,

kh 2

z
=

u
N 2 , (9a)

	m+1 = 	m �
i
N
	 u

2�
ei�/4[eiu(N+m+1

2
)2/(2N2) � eiu(N�m�

1
2
)2/(2N2)],

(9b)

where it is noted that it is sufficient to perform the
computations for m > 0 as the diffraction pattern is sym-
metrical.

On account of the trigonometric identity

ei	 �ei� =ei(	+�)/2[ei(	��)/2 � e�i(	��)/2]

=2iei(	+�)/2 sin[(	� � )/2], (10a)

this can be transformed into the following expressions,
which are convenient for practical computations:

	m+1 = 	m +
1
N
	2u

�
eiXm sin Ym , (10b)

Xm =
�
4

+
u
2 �1 +

(m + 1
2)

2

N 2 �, Ym =
u (m + 1

2)
N

. (10c)

As an example, Fig. 5 shows the approximate and exact
diffraction profiles of a slit for u = 5�, N = 16, and
using the well-known Fresnel solution, 	F(0)
= (1 � i )F (�u /�), as the starting value. The two
curves resemble each other closely, the largest errors
being on the order of 0.023 and occurring near
m /N = 0.5. The improvement of accuracy achieved by
using larger values of N is shown in the center portion
of Table 1.

Fig. 5. Approximate (—) and exact (----) diffraction profiles of a slit.
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3.2 Half Plane

On letting L = 0 and R = �, Eqs. (8a) and (8b) apply
to a diffracting straight edge which coincides with the
y -axis of Fig. 4. As there is no aperture edge on the
right, the last term of Eq. (8b) is now absent and one
obtains

	m�1 = 	m �
i hei�/4

�� z
eik(m�1�

1
2
)2h2/(2z). (11a)

The previous definition of h as a given fraction of
aperture width is no longer applicable but can be
replaced by taking h as a certain fraction, say h
= �� z /M , of the width of the first Fresnel zone. Hence
it follows easily that

	m�1 = 	m �
i

M
eiXm�1, Xm�1 = ��1

4
+

(m � 1 � 1
2)

2

M 2 �.

(11b)

Figure 6 shows the diffraction pattern computed in
this manner for M = 4, using the well-known Fresnel
solution, 	F(0) = 1/2, as the starting value. The agree-
ment with the exact result is within � 0.025 for
� 4 � m /M < 1, but considerably worse beyond these
limits. These discrepancies are reduced when larger val-
ues of M are used, as may be seen from the right-hand
side of Table 1.

Fig. 6. Approximate (—) and exact (----) diffraction profiles of a half
plane.

4. Appendix A. Evaluation of Eq. (7a) by
the Method of Stationary Phase

Equation (7a) is of the form

	F(x ) = �
(r�x)

�(l�x)

d� Aeikg(�),

where � = � � x , A = � iei�/4/��z , g (� ) = � 2/z . The
only stationary point, defined by g'(� ) = � /z = 0, oc-
curs at �0 = 0 so that, according to the Appendix of Ref.
[2], the stationary-phase value of the integral is

	F(x ) ≈ ���

�|g" (�0)|
Aeikg(�0),

where g" (�0) = 1/z and � = e+i�/4 according as g" (�0) is
positive or negative. Since 1/z is positive, this gives
	F ≈ 1 so that the “diffraction pattern” of a slit or half
plane would be identically equal to one everywhere in
the plane of observation.
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